Potrošnja grafičkih kartica?

Ajde ovako, skini samo film sa neta X265 (kodek) veličine recimo 2GB neka je 720p,to je inače prosek pa lepo pusti na tvojoj mašini , pa nam pošalji zauzeće procesora i grafe i ram memorije pa da iskomentarisemo onda čemu ti služi zapravo ta integrusa u celoj toj priči..i zašto je to tako...
(Tip: ti si se izgleda i toga odrekao) znaci samo web surf (forum) i unos i pregled texta u office app.. 😆
Otvorio sam nešto na jubitu. I zaključio: Obzirom da FF ždere 'previše' memorije, samo svakih 10-ak sekundi treba da skine paketić podataka! Znači, to bi samo trebao češće da radi ako bi manje memorije zauzeo! Na pola spota je već skinuo sve podatke, kasnije nije ni bilo internet prometa!

mars.png
 
Otvorio sam nešto na jubitu. I zaključio: Obzirom da FF ždere 'previše' memorije, samo svakih 10-ak sekundi treba da skine paketić podataka! Znači, to bi samo trebao češće da radi ako bi manje memorije zauzeo! Na pola spota je već skinuo sve podatke, kasnije nije ni bilo internet prometa!

Pogledajte prilog 694367
Jel ti znas sta je X265 kodek ?

To sto si pustio je x264 ... dobro zaboravi ...

Sta si zakljucio , sta mozes na toj masini iz potpisa ? kada oba jezgra dere samo na pustanju vide-a na 50%

Ne idi u offtopic , svi znamo kako radi youtube ...internet protok me ne zanima u ovoj diskusiji.

Dakle zasto ti toliko cpu dere youtube playback ?! ajde da vidim tvoju analizu... i gde je taj linux opensource magic da vidimo gpu zauzece prilikom playback-a ? :per:
 
Ukratko o tome kako gpu pomaze i rasterecuje cpu na modernim masinama ... moze pomoci i u radu kod starijih kompova ako se barem primeni nova grafa koja ima ove mogucnosti .. generalno od Rideon cini mi se serije HD7000 pa na dalje ... za Nvidiju ili Intel ne zna tacno od kojih modela..

5 reasons to offload your CPU with a GPU

Posted on January 15, 2014 by Marc Burkels


In my role as a Product Manager at Leaseweb, I constantly interact with our customers to find out how we can improve our products to fit their needs better. Quite often, I receive requests from customers for faster processors or even GPUs to accelerate their hosting platform.
In an effort to expand our product portfolio and meet our customers’ demands better, Leaseweb now offers selected high-performance GPU servers. Before I explain the specifications, here’s a look at the top 5 ways you can benefit from a GPU.
What gives GPUs the extra edge over CPUs?
3D processing: GPUs were designed for 3D rendering. When assigned to a CPU-only application, the processing is slow due to linear request handling. Inserting a GPU into your server boosts the performance multiple times as they simultaneously process and compute large blocks of data. With the repetitive compute tasks offloaded from the CPU, it is free to process sequential tasks.
Accelerating Speed: Yes, by now we all know GPUs accelerate speed, but what makes them work faster? Composed of multiple cores, a GPU is built to simultaneously handle hundreds of threads–accelerating the application speed by tenfold over a CPU-only application. A CPU uses cache to reduce memory access latency, costing a lot of die-space. A GPU amplifies its bandwidth with cache memory. Where a CPU would wait for RAM to become available to process a thread, a GPU will switch to another thread that is ready for processing, thus reducing the latency and delivering faster results.
Number cruncher: When it comes to number crunching and graphics processing (involving millions of calculations per second), a GPU can make a high-end CPU look like a Commodore 64! This is because of the high amount of cores that GPUs have–high-end graphics cards have up to 2880 cores. A CPU supports 1-2 threads per core. In contrast, the multiprocessor of a NVIDIA CUDA core can execute an astonishing 1024 threads. This is also one of the reasons that mining cryptocurrencies (Bitcoin, Litecoin, etc.) deliver faster results when a GPU is used instead of a CPU. Although ASICS chips now even outsmart a GPU when it comes to mining coins.
Big data analytics: To make better real-time business decisions, GPUs are increasingly being used for big data analytics. Shazam, with a database of over 27 million tracks, uses GPU’s to identify a song from a snippet of track captured by its mobile users. The use of GPUs at Salesforce.com help companies such as Dell, Cisco, and Gatorade analyze and monitor over 500 million tweets daily. Real-time insights are delivered 10 minutes faster compared to a CPU-based system.
VDI environment: GPU hardware acceleration can be shared between virtual desktops–up to 32 users can share a graphics board. NVIDIA GRID is a powerful tool for providing superior graphics performance when sharing a GPU among multiple users. The optimized multi-GPU design with sufficient memory and low-latency remote display maximizes user density for applications that are graphics intensive.
GPU – A better fit for various industries
GPUs are traditionally used to process complex algorithms and massive data set for engineering and computer science applications. More and more companies are exploring various other uses of GPUs–audio search, image recognition, and big data analytics are good examples.
We use NVIDIA Quadro 4000 and 6000 in our Leaseweb GPU servers for customers in the space of data mining and numerical analysis; heavy content producers such as advertising agencies; and web design agencies developing interactive applications, games, and 3D content.

https://blog.leaseweb.com/2014/01/15/5-reasons-offload-cpu-gpu/
 
Jel ti znas sta je X265 kodek ?

To sto si pustio je x264 ... dobro zaboravi ...

Sta si zakljucio , sta mozes na toj masini iz potpisa ? kada oba jezgra dere samo na pustanju vide-a na 50%

Ne idi u offtopic , svi znamo kako radi youtube ...internet protok me ne zanima u ovoj diskusiji.

Dakle zasto ti toliko cpu dere youtube playback ?! ajde da vidim tvoju analizu... i gde je taj linux opensource magic da vidimo gpu zauzece prilikom playback-a ? :per:
Hteo sam da kažem da ti je džaba i 100GB memorije na grafičkoj ako CPU ne stigne da dostavi materijal ni za dva puta 'teži' video materijal od moga primera! :super:
 
Ukratko o tome kako gpu pomaze i rasterecuje cpu na modernim masinama ... moze pomoci i u radu kod starijih kompova ako se barem primeni nova grafa koja ima ove mogucnosti .. generalno od Rideon cini mi se serije HD7000 pa na dalje ... za Nvidiju ili Intel ne zna tacno od kojih modela..

5 reasons to offload your CPU with a GPU

Posted on January 15, 2014 by Marc Burkels


In my role as a Product Manager at Leaseweb, I constantly interact with our customers to find out how we can improve our products to fit their needs better. Quite often, I receive requests from customers for faster processors or even GPUs to accelerate their hosting platform.
In an effort to expand our product portfolio and meet our customers’ demands better, Leaseweb now offers selected high-performance GPU servers. Before I explain the specifications, here’s a look at the top 5 ways you can benefit from a GPU.
What gives GPUs the extra edge over CPUs?
3D processing: GPUs were designed for 3D rendering. When assigned to a CPU-only application, the processing is slow due to linear request handling. Inserting a GPU into your server boosts the performance multiple times as they simultaneously process and compute large blocks of data. With the repetitive compute tasks offloaded from the CPU, it is free to process sequential tasks.
Accelerating Speed: Yes, by now we all know GPUs accelerate speed, but what makes them work faster? Composed of multiple cores, a GPU is built to simultaneously handle hundreds of threads–accelerating the application speed by tenfold over a CPU-only application. A CPU uses cache to reduce memory access latency, costing a lot of die-space. A GPU amplifies its bandwidth with cache memory. Where a CPU would wait for RAM to become available to process a thread, a GPU will switch to another thread that is ready for processing, thus reducing the latency and delivering faster results.
Number cruncher: When it comes to number crunching and graphics processing (involving millions of calculations per second), a GPU can make a high-end CPU look like a Commodore 64! This is because of the high amount of cores that GPUs have–high-end graphics cards have up to 2880 cores. A CPU supports 1-2 threads per core. In contrast, the multiprocessor of a NVIDIA CUDA core can execute an astonishing 1024 threads. This is also one of the reasons that mining cryptocurrencies (Bitcoin, Litecoin, etc.) deliver faster results when a GPU is used instead of a CPU. Although ASICS chips now even outsmart a GPU when it comes to mining coins.
Big data analytics: To make better real-time business decisions, GPUs are increasingly being used for big data analytics. Shazam, with a database of over 27 million tracks, uses GPU’s to identify a song from a snippet of track captured by its mobile users. The use of GPUs at Salesforce.com help companies such as Dell, Cisco, and Gatorade analyze and monitor over 500 million tweets daily. Real-time insights are delivered 10 minutes faster compared to a CPU-based system.
VDI environment: GPU hardware acceleration can be shared between virtual desktops–up to 32 users can share a graphics board. NVIDIA GRID is a powerful tool for providing superior graphics performance when sharing a GPU among multiple users. The optimized multi-GPU design with sufficient memory and low-latency remote display maximizes user density for applications that are graphics intensive.
GPU – A better fit for various industries
GPUs are traditionally used to process complex algorithms and massive data set for engineering and computer science applications. More and more companies are exploring various other uses of GPUs–audio search, image recognition, and big data analytics are good examples.
We use NVIDIA Quadro 4000 and 6000 in our Leaseweb GPU servers for customers in the space of data mining and numerical analysis; heavy content producers such as advertising agencies; and web design agencies developing interactive applications, games, and 3D content.

https://blog.leaseweb.com/2014/01/15/5-reasons-offload-cpu-gpu/
Nemam ništa protiv ideje da na moju DualCore makine uštekam neku besnu grafičku i dobijem nešto u klasi i5 makine! :zcepanje:
 
Hteo sam da kažem da ti je džaba i 100GB memorije na grafičkoj ako CPU ne stigne da dostavi materijal ni za dva puta 'teži' video materijal od moga primera! :super:
Ne , ne shvatas poentu ...
CPU ti (oba jezgra) kako si video na 50%

Nije problem cpu ... problem je mator gpu , samo da nam kazes koje je to integrisano resenje ali garant nema podrsku za hardversko dekodiranje video sadrzaja.
E to je razlog zasto ti se vrti na 50% i muci oba jezgra.
 
Nemam ništa protiv ideje da na moju DualCore makine uštekam neku besnu grafičku i dobijem nešto u klasi i5 makine! :zcepanje:
Rekoh vec da ne vredi sa tobom komentarisati jer sve shvatas na banalan nacin ... ko Bosanci , mozda jos gore ...

Multi-monitor support
Main article: AMD Eyefinity

The AMD Eyefinity-branded on-die display controllers were introduced in September 2009 in the Radeon HD 5000 Series and have been present in all products since.[14]

Video acceleration
Both Unified Video Decoder (UVD) and Video Coding Engine (VCE) are present on the dies of all products and supported by AMD Catalyst and by the free and open-source graphics device driver#ATI/AMD.

OpenCL (API)
OpenCL accelerates many scientific Software Packages against CPU up to factor 10 or 100 and more. Open CL 1.0 to 1.2 are supported for all Chips with Terascale and GCN Architecture. OpenCL 2.0 is supported with GCN 2nd Gen. or 1.2 and higher) [15] For OpenCL 2.1 and 2.2 only Driver Updates are necessary with OpenCL 2.0 conformant Cards.

Vulkan (API)
API Vulkan 1.0 is supported for all with GCN Architecture. Vulkan 1.1 (GCN 2nd Gen. or 1.2 and higher) will be supported with actual drivers in 2018 (here only HD 7790).[16] On newer drivers Vulkan 1.1 on Windows and Linux is supported on all GCN-architecture based GPUs. Vulkan 1.2 is available with Adrenalin 20.1 and Linux Mesa 20.0 for GCN 2nd Gen Ort higher.

https://en.wikipedia.org/wiki/Radeon_HD_7000_series

:per:
 
Ne , ne shvatas poentu ...
CPU ti (oba jezgra) kako si video na 50%

Nije problem cpu ... problem je mator gpu , samo da nam kazes koje je to integrisano resenje ali garant nema podrsku za hardversko dekodiranje video sadrzaja.
E to je razlog zasto ti se vrti na 50% i muci oba jezgra.
Prebacuješ lopticu preko mreže? Ako posao odrađuje GPU-procesor, opet nema smisla trpati više podataka nego što ih stigne obraditi!? Moja ploča:
https://www.gigabyte.com/Motherboard/GA-MA78LM-S2H-rev-13#ov
 
Rekoh vec da ne vredi sa tobom komentarisati jer sve shvatas na banalan nacin ... ko Bosanci , mozda jos gore ...

Multi-monitor support
Main article: AMD Eyefinity

The AMD Eyefinity-branded on-die display controllers were introduced in September 2009 in the Radeon HD 5000 Series and have been present in all products since.[14]

Video acceleration
Both Unified Video Decoder (UVD) and Video Coding Engine (VCE) are present on the dies of all products and supported by AMD Catalyst and by the free and open-source graphics device driver#ATI/AMD.

OpenCL (API)
OpenCL accelerates many scientific Software Packages against CPU up to factor 10 or 100 and more. Open CL 1.0 to 1.2 are supported for all Chips with Terascale and GCN Architecture. OpenCL 2.0 is supported with GCN 2nd Gen. or 1.2 and higher) [15] For OpenCL 2.1 and 2.2 only Driver Updates are necessary with OpenCL 2.0 conformant Cards.

Vulkan (API)
API Vulkan 1.0 is supported for all with GCN Architecture. Vulkan 1.1 (GCN 2nd Gen. or 1.2 and higher) will be supported with actual drivers in 2018 (here only HD 7790).[16] On newer drivers Vulkan 1.1 on Windows and Linux is supported on all GCN-architecture based GPUs. Vulkan 1.2 is available with Adrenalin 20.1 and Linux Mesa 20.0 for GCN 2nd Gen Ort higher.

https://en.wikipedia.org/wiki/Radeon_HD_7000_series

:per:
Hardveraši lutaju kao guske u magli? Koje poslove će da radi CPU na ploči, a koje CPU na grafičkoj? Gde treba biti više BRŽE memorije: Na ploči ili na grafičkoj? :zcepanje:
 
Hardveraši lutaju kao guske u magli? Koje poslove će da radi CPU na ploči, a koje CPU na grafičkoj? Gde treba biti više BRŽE memorije: Na ploči ili na grafičkoj? :zcepanje:
hd7730 i uskladio si cpu sa tom grafom npr ...
Nisi glup znas sta radi cpu a sta gpu ... i jedno i drugo treba u nekim situacija offload-ovati ...
Sto bi npr gpu bio miran a da se cpu muci i renderuje sam taj video sa youtuba ?!
 
Poslednja izmena:
Evo ti primer.


Chrome CPU usage with and without gpu acceleration The video is a mp4 video so most modern GPUs have full hardware decoding capabilities. However, for webm or vp9 youtube videos chrome doesnt seem to use gpu acceleration in my windows 7 rig. I need to use other ways to use gpu to play the vp9 videos. Playing 4k or 2160p in chrome will result in 100% cpu usage. Even 2k or 1440p will result in high cpu usage. my wolfdale E8400 at 3GHz got relieved after enabling hardware acceleration when playing 1080p youtube video. gpu usage % increased when hardware acceleration was enabled.
 
Otvorio sam nešto na jubitu. I zaključio: Obzirom da FF ždere 'previše' memorije, samo svakih 10-ak sekundi treba da skine paketić podataka! Znači, to bi samo trebao češće da radi ako bi manje memorije zauzeo! Na pola spota je već skinuo sve podatke, kasnije nije ni bilo internet prometa!

Pogledajte prilog 694367
YouTube pa zauzece od 61 % CPU! Pa meni radi-Edge browser sa 20 + tabova I YouTube s njima, igra-WOT, itd...zauzece CPU je-11 %...A komentare odredjenih sa grafickim od 512 MB-jelt o onaj isti kome je 1030 bila"zver od graficke"? EE kukavaca sinji...uzece taj opristojan komad hardvera….za jedno par decenija… A vasa sva komentarisanja o grafickim...nemam komentar...Sad graficke trose MANJE nego pre-ali zato daju BRUTALNE performanse...Ali danas graficka ispod 2,,3 ili cak 4 Gb svoje memorije je ..tanka..ja imam sa 3 pa je nekad "tesno"
 
"HD"? Ili HD ready...? I sta znaci "za desktop"? Ljudi bre...pricate o 720 P danas kad postoji iznad toga-FULL HD, WHD, 4k.... mislim ja ne znam o cemu vi pricate…?
Da ti nacrtam: Kao i Majkrosoft radi prenosnih govanca, tako će i proizvođači grafičkih pasti u depresiju radi 4K Smart TV-a. Koja budala će gledati 4K film sedeći na stolici i buljeći u monitor? Za to će da kupi Smart TV, a ako mu ipak treba i PC-makina uz androidno govance, kupiće neku jeftinu. Za besne grafičke im ostaje 'mršavo' tržište gejmera i CAD-korisnika!
 
Da ti nacrtam: Kao i Majkrosoft radi prenosnih govanca, tako će i proizvođači grafičkih pasti u depresiju radi 4K Smart TV-a. Koja budala će gledati 4K film sedeći na stolici i buljeći u monitor? Za to će da kupi Smart TV, a ako mu ipak treba i PC-makina uz androidno govance, kupiće neku jeftinu. Za besne grafičke im ostaje 'mršavo' tržište gejmera i CAD-korisnika!
Ja stvarno ne znam cim se ti drogirash? Jesi ti video nekad u zivotu, ne, KORISTIO FULLHD...da ne pricamo o 4K..? 'ajde sad mi I ti odrzi ti predavnaje kako to "nije neka razlika", Sem toga na moje pitanje nisi odgovorio..Tj na to da je tebi sa YT samo zauzece CPU 61 % I tebi je to..?OK? LOL!
 

Back
Top