SUBJEKTIVNOST: Osnova Anvinove ideje počiva u inverziji teoloških koncepata. Umesto da postojanje Boga opravdava traženjem njegovih manifestacija, on na bazi složenih teoloških znanja, određuje koliko bi manifestacije bile očekivane ako bi se pretpostavilo da Bog postoji (procena vrednosti D-indikatora). Zatim, pomoću Bajesove teoreme lako izračunava inverznu verovatnoću: da postoji sam Bog, nezavisno od njegovih manifestacija. Pritom, uopšte nije neophodno da uranja u svu kompleksnost teologije i da utvrdi istinitost samih dokaza i manifestacija božanskog postojanja, već je dovoljno samo da poznaje koliko su te manifestacije verovatne kada se već pretpostavi da Bog postoji. Jednostavno i nedvosmisleno, utemeljeno na elementarnoj statistici – to rezultat od 67 odsto za postojanje Boga čini posebno privlačnim. Stoga su reakcije u naučnoj zajednici, ali i u široj javnosti, brojne i uglavnom pohvalne, dok su pojedini stručnjaci dočekali Anvinovu statističku procenu s velikim i neskrivenim oduševljenjem. Tako Pol Dejvis, lauerat Templtonove nagrade za 1999. godinu, smatra da je Stefan Anvin postigao praktično nemoguće uz pomoć minimalnog matematičkog proračuna, izbegavajući pritom da uplovi u opskurnost teoloških spekulacija. Međutim, dobijenu vrednost od 67 odsto ne treba shvatiti kao definitivno određenu verovatnoću za postojanje Boga ili kao kakvu fundamentalnu konstantu. Sam autor ističe da njegov proračun možda jeste omogućio da se prvi put izračuna verovatnoća postojanja Boga, ali se nikako ne bi mogao uporediti sa poduhvatom kao što je prvo izračunavanje broja Pi. Razlog za to je što izbor vrednosti D-indikatora predstavlja subjektivni element u proračunu, pošto je u krajnjoj liniji zasnovan na ličnoj proceni. Poznati kolumnista naučnog časopisa "Sajentifik Ameriken", Majkl Šermer, skreće posebnu pažnju na ovaj detalj. Koristeći identičan statistički metod i početnu pretpostavku o 50% odsto, Šermer ponavlja Anvinov račun, ali s drugačijim vrednostima D-indikatora, zasnovanim na svojoj studiji evolutivnog porekla morala i sociokulturnom poreklu vere: priznanje dobrote (D=0,5), postojanje moralnog zla (D=0,1), postojanje prirodnog zla (D=0,1), psihološka čuda (D=1), natprirodna čuda (D=0,5) i religiozna iskustva (D=0,1). Uz ove vrednosti D-indikatora, procenjenih sa najvećim mogućim skepticizmom, mogućnost da Bog postoji je svega 2 odsto. Šermer, doduše, ne insistira na ovako dobijenom rezultatu, ali ističe da on pokazuje kako Anvinova studija, matematički sasvim relevantna, zbog neizbežne subjektivnosti u određivanju verovatnoće nije mnogo više od zanimljive etide u razmišljanju, koja je prihvatljiva samo onima koji na neki način već veruju. Za sve ateiste i skeptike, ipak, nije došlo do presudnog razotkrivanja, pošto odgovor nije stigao samo kroz statistiku i logiku. Pitanje Boga ostalo je pitanje ličnog opredeljenja – pa tako i dalje izvan nauke. Religiozna istina je, očigledno, pre svega stvar ljudskih ubeđenja, uprkos svim pokušajima da se do nje dopre drugim sredstvima, što nas vraća na jednu drugu, verovatno poznatiju misao drevnog sofiste Protagore – "čovek je mera svih stvari". Očigledno, među svim tim stvarima, sa određenom verovatnoćom (bila ona 0, 2 ili 67 odsto), nalazi se i Bog.
Slobodan Bubnjević
Bajesova teorema
Bajesova teorema je jedno od elementarnih, ali za prirodne nauke vrlo korisnih, statističkih oruđa. Dobila je ime po engleskom svešteniku i matematičaru Tomasu Bajesu, koji je još u XVIII veku dao značajan doprinos razvoju matematičke statistike. Čitaocima "Vremena" kojima su osnove statističkog računa iz srednje škole i dalje u sećanju, bez sumnje je poznato da oznaka P(A) u statistici obično predstavlja verovatnoću događaja A, dok je, recimo, P(B) verovatnoća da se dogodi događaj B. Pored ovih, običnih verovatnoća, u statistici se koriste i takozvane uslovne verovatnoće, o kojima i govori Bajesova teorema. Tako je P(A|B) verovatnoća da se dogodi događaj A, ako se dogodio događaj B, što je u mnogim eksperimentima i teorijama (među ostalima, i u Anvinovoj računici božanske verovatnoće) vrlo značajna veličina za određivanje. Ponekad je, sticajem okolnosti, lakše izračunati inverznu uslovnu verovatnoću, P(B|A), tj. verovatnoću da se dogodi B ako se dogodio A, pa na osnovu nje odrediti P(A|B). Za to izračunavanje jedne uslovne verovatnoće na osnovu njoj inverzne služi formula Bajesove teoreme:
P(A/B) = ( P(A) x P(B/A) ) / ( P(A) x P(B/A) + P (AC) x P(B/AC)
Kao što se vidi, u brojiocu razlomka javlja se proizvod obične P(A) i uslovne verovatnoće P(B|A) (takav proizvod odgovara uslovu da su se dogodili i A i B), dok se u imeniocu pojavljuje zbir dva takva proizvoda. Oznaka AC predstavlja takozvani komplementaran događaj od A, a P(AC) verovatnoću da se dogodio AC, tj. da se sam A nije dogodio. Očigledno je da važi P(A)=100%-P(AC), jer je 100 odsto verovatnoća sigurnog događaja. Kako su A i AC dva nezavisna događaja i to takva da pokrivaju sve moguće događaje (ili se A dogodio ili se pak, nije dogodio, kada se zapravo dogodio AC), suma u imeniocu Bajesove formule odgovara verovatnoći da se B svakako dogodio, bez obzira na A. Treba napomenuti da se sumiranje u imeniocu Bajesove formule ne mora zaustaviti samo na dva moguća slučaja A i AC, kako je ovde zbog jednostavnosti dato, već se u opštem obliku suma zadaje preko više nezavisnih, međusobno isključujućih događaja A1, A2,... ,An.
Legenda, počev od gornjeg levog simbola: radiation, particles, heavy particles, carrying, the weak force, quark, anti quark, electron, positron (anti-electron), proton, neutron, meson, hydrogen, deuterium, helium, lithium