soylentgreen
Početnik
- Poruka
- 15
gravitacija i ChatGPT
Zanimao me uticaj Sunca na objekte na zemlji. U stvari, prvo me zanimao uticaj Meseca, ali sam onda shvatio da je uticaj sunca 200 puta veci. Plime i oseke izaziva sunce a ne mesec.
[uzgred, centar gravitacije sistema zemlja-mesec, oko koga se okrecu i mesec i zemlja, je oko 1700 km ispod povrsine zemlje (1/4 radijusa), i naravno kruzi, pun krug za nesto manje od 24h. Zemljina orbita nije glatka elipsa, vec superponirana sa sinusoidom za periodom od oko 24h]
Ja sam izracunao da Sunce privlaci 100kg mase na povrsini zemlje sa 66 grama, tj. ponda (pond je sila, gram je masa), iliti oko 0.6 N (newtons).
To znaci, ako imas 100Kg, a sunce ti je iznad glave (podne), i na ekvatoru si, onda si 66 grama laksi na vagi, a u ponoc 66 grama tezi. Ukupna razlika 130 grama, nije bas malo.
Ovo mi ranije uopste nije palo napamet - da izmerena tezina, u zavisnosti od doba dana i geografske sirine, moze da varira do 0.13%. Nije malo, ako recimo prodajes zlato, na 1kg razlika je 1.3g, odnosno oko $100, ako se meri u podne i u ponoc, na ekvatoru. Osim ako je vaga sa tegovima a ne elektronska ili opruge.
Jel neko cuo za ovo? Ja nisam.
E, sad, posto mi se sve cinilo da negde ozbiljno gresim, posto za ovo nikad nisam cuo, odem da pitam ChatGPT. Obratiti paznju na tok konverzacije. Nije mi jasno da li se na kraju vadio ili stvarno proverio.:
===
You:
how person's weight on Earth surface depend on the relative position of the Sun?
ChatGPT:
A person's weight on the Earth's surface doesn't directly depend on the relative position of the Sun. Weight, as we typically understand it, is a measure of the gravitational force exerted on an object by the Earth. This force is determined by the mass of the Earth and the distance between the person and the center of the Earth.
However, the position of the Sun relative to the Earth does affect the distribution of gravitational forces acting on the Earth, which in turn can have very subtle effects on the Earth's shape and its gravitational field. These effects are known as tidal forces. They're most noticeable in large bodies of water, causing the tides.
But when it comes to a person's weight, the influence of the Sun's position is negligible compared to the much larger effect of the Earth's gravity. So, for practical purposes, a person's weight on Earth remains relatively constant regardless of the position of the Sun.
You:
ok, but that effect is not zero. how much is it?
ChatGPT:
You're correct; while the effect of the Sun's position on a person's weight on Earth is extremely small, it's not zero. The gravitational force exerted by the Sun on a person on the Earth's surface is about 0.6 millinewtons (mN) per kilogram (kg) of mass.
To put this into perspective, a person weighing 70 kilograms would experience an additional gravitational force from the Sun of about 42 millinewtons. This force is only about 0.0004% of the force exerted by the Earth on the same person, so it's practically negligible for everyday purposes.
[ e, sad obratiti paznju, ovo se nije slagalo sa mojim racunom, koga sam proverio, bilo je tacno 10 puta manje kod ChatGPT-a ]
You:
actually it's 6 mN, not 0.6 mN
ChatGPT:
You're correct, my apologies for the oversight. The gravitational force exerted by the Sun on a person on the Earth's surface is indeed approximately 6 millinewtons (mN) per kilogram (kg) of mass.
So, using the same example of a person weighing 70 kilograms, the additional gravitational force from the Sun would be around 420 millinewtons, or 0.42 newtons. While still relatively small compared to the Earth's gravitational force on the person, it's a more accurate representation of the Sun's influence. Thank you for the correction!
Zanimao me uticaj Sunca na objekte na zemlji. U stvari, prvo me zanimao uticaj Meseca, ali sam onda shvatio da je uticaj sunca 200 puta veci. Plime i oseke izaziva sunce a ne mesec.
[uzgred, centar gravitacije sistema zemlja-mesec, oko koga se okrecu i mesec i zemlja, je oko 1700 km ispod povrsine zemlje (1/4 radijusa), i naravno kruzi, pun krug za nesto manje od 24h. Zemljina orbita nije glatka elipsa, vec superponirana sa sinusoidom za periodom od oko 24h]
Ja sam izracunao da Sunce privlaci 100kg mase na povrsini zemlje sa 66 grama, tj. ponda (pond je sila, gram je masa), iliti oko 0.6 N (newtons).
To znaci, ako imas 100Kg, a sunce ti je iznad glave (podne), i na ekvatoru si, onda si 66 grama laksi na vagi, a u ponoc 66 grama tezi. Ukupna razlika 130 grama, nije bas malo.
Ovo mi ranije uopste nije palo napamet - da izmerena tezina, u zavisnosti od doba dana i geografske sirine, moze da varira do 0.13%. Nije malo, ako recimo prodajes zlato, na 1kg razlika je 1.3g, odnosno oko $100, ako se meri u podne i u ponoc, na ekvatoru. Osim ako je vaga sa tegovima a ne elektronska ili opruge.
Jel neko cuo za ovo? Ja nisam.
E, sad, posto mi se sve cinilo da negde ozbiljno gresim, posto za ovo nikad nisam cuo, odem da pitam ChatGPT. Obratiti paznju na tok konverzacije. Nije mi jasno da li se na kraju vadio ili stvarno proverio.:
===
You:
how person's weight on Earth surface depend on the relative position of the Sun?
ChatGPT:
A person's weight on the Earth's surface doesn't directly depend on the relative position of the Sun. Weight, as we typically understand it, is a measure of the gravitational force exerted on an object by the Earth. This force is determined by the mass of the Earth and the distance between the person and the center of the Earth.
However, the position of the Sun relative to the Earth does affect the distribution of gravitational forces acting on the Earth, which in turn can have very subtle effects on the Earth's shape and its gravitational field. These effects are known as tidal forces. They're most noticeable in large bodies of water, causing the tides.
But when it comes to a person's weight, the influence of the Sun's position is negligible compared to the much larger effect of the Earth's gravity. So, for practical purposes, a person's weight on Earth remains relatively constant regardless of the position of the Sun.
You:
ok, but that effect is not zero. how much is it?
ChatGPT:
You're correct; while the effect of the Sun's position on a person's weight on Earth is extremely small, it's not zero. The gravitational force exerted by the Sun on a person on the Earth's surface is about 0.6 millinewtons (mN) per kilogram (kg) of mass.
To put this into perspective, a person weighing 70 kilograms would experience an additional gravitational force from the Sun of about 42 millinewtons. This force is only about 0.0004% of the force exerted by the Earth on the same person, so it's practically negligible for everyday purposes.
[ e, sad obratiti paznju, ovo se nije slagalo sa mojim racunom, koga sam proverio, bilo je tacno 10 puta manje kod ChatGPT-a ]
You:
actually it's 6 mN, not 0.6 mN
ChatGPT:
You're correct, my apologies for the oversight. The gravitational force exerted by the Sun on a person on the Earth's surface is indeed approximately 6 millinewtons (mN) per kilogram (kg) of mass.
So, using the same example of a person weighing 70 kilograms, the additional gravitational force from the Sun would be around 420 millinewtons, or 0.42 newtons. While still relatively small compared to the Earth's gravitational force on the person, it's a more accurate representation of the Sun's influence. Thank you for the correction!