Da li je dolazak čoveka na Mesec istorijski falsifikat?

Nema šanse da padobran to izdrži, zato je tu aerodinamika odradila posao i usporila modul do 325mph kad su se padobrani otvorili.

https://medium.com/the-wonders-of-s...mt-11-35-05-houston-time-on-july-43b67c7c1e1f

The Apollo 11 command module entered the atmosphere at 16:35:05 GMT (11:35:05 Houston time) on July 24, 1969.
A spacecraft re-entering the Earth’s atmosphere is a wonderful demonstration of the integration of science and engineering. Scientists make observations of how the universe works and then engineers are inspired to make machines that take advantage of these observations.
A spacecraft, like the Apollo 11 Command Module, is traveling at a great speed when it enters the atmosphere. Apollo 11 entered the atmosphere at almost 24 thousand miles per hour (10.67 km/s). It had to shed that speed before the capsule landed in the water. Parachutes couldn’t be deployed until the speed was down to about 350 mph (150 m/s). Without engines to slow it down, the only mechanism of deceleration was to have its kinetic energy transferred to the air molecules that it slammed into. We are talking about a lot of kinetic energy — about 300 billion joules. That’s about the same energy as Hoover Dam produces in 2.5 minutes.

That transfer turns speed energy into heat energy. It gets very, very hot around the spacecraft — hotter than the surface of the Sun. This should incinerate the spacecraft, but this is where the wonderful integration of science and engineering comes into play.

https://medium.com/m/signin?actionU...-----------------post_audio_button-----------
O, okej. Možemo se na to osloniti pri budućim udarima asteroida. :lol: Jer ako uspori do 500 km/h na visini od 6 km, do zemlje će sigurno još da uspori i praktično samo da legne na Zemlju.


Upon reentry, the drogue parachute was the first to be deployed. It was designed to stabilize the module and slow it down from supersonic speeds. The drogue parachute was deployed at an altitude of approximately 21,000 feet (6,400 meters) above sea level. Its purpose was to reduce the module's speed from around 300 miles per hour (480 kilometers per hour) to about 125 miles per hour (200 kilometers per hour).

After the drogue parachute had successfully slowed down the module, it was jettisoned, and the two main parachutes were then deployed. The main parachutes were responsible for further decelerating the module and ensuring a gentle splashdown in the ocean. They were deployed at an altitude of approximately 10,000 feet (3,000 meters) above sea level.

The deployment of the main parachutes marked a critical phase of the reentry process as it significantly reduced the descent rate of the module. The main parachutes provided a final deceleration to bring the module's descent speed to around 22 miles per hour (35 kilometers per hour) before it splashed down in the Pacific Ocean.

In summary, upon reentry into Earth's atmosphere, the drogue parachute on Apollo 11's Command Module Columbia was deployed at an altitude of approximately 21,000 feet (6,400 meters) above sea level, while the two main parachutes were deployed at an altitude of approximately 10,000 feet (3,000 meters) above sea level.
 
Sila gravitacije na visini od 50km i na visini od 100 km malo se razlikuje od one pri površini Zemlje:

At an altitude of 50 km (31 miles) above the Earth's surface, the force of gravity is slightly weaker compared to the surface. This is because as an object moves away from the Earth's surface, it experiences a decrease in gravitational pull due to the increasing distance between them. However, since 50 km is still relatively close to the Earth's surface, the difference in gravity is not significant.

Let's calculate the gravity acceleration at an altitude of 50 km:

g = (6.67430 × 10^-11 * 5.972 × 10^24) / (6371 + 50)^2
g ≈ 8.665 m/s^2

Therefore, at an altitude of 50 km, the gravity acceleration is approximately 8.665 m/s^2.

Now let's calculate the gravity acceleration at an altitude of 100 km:

g = (6.67430 × 10^-11 * 5.972 × 10^24) / (6371 + 100)^2
g ≈ 7.750 m/s^2

Therefore, at an altitude of 100 km, the gravity acceleration is approximately 7.750 m/s^2.

Dakle, pošto je ispod 6 km vazduh znatno gušći i usporavanje će biti daleko značajnije? :lol:
 
EncK7Eo.png

Inconclusive.

ako ti je ovo neubedljivo, onda ti i nemaš organ tela koji treba ubedjivati, al bukvalno!
ovo je odraz čoveka, ko zna odakle, 99,999% bukvalno ovog koji fotka
i glava je okrenuta tako da NIKAKO se ne slaže sa položajem ramena i kičme
ipak je ovo čovek na slici, a ne zmija, al kao što rekoh, trebi nešto objašnjavati je besmisleno
čisto gubljenje vremena, doveka možeš crtati, ti nemaš čime to da razumeš...nisi kriv...priroda!
telo je nagnuto 100% bez ikakvog uvijanja NAPRED i nemoguće je ovako okrenuti glavu

a o ODNOSU TELO -*GLAVA da i ne govorim...ponesi metar pa meri ljude po ulici, šta da ti kažem...
kad ne možeš sam da zamisliš ili udji u neku radnju i zamoli ih da ti daju da meriš one lutke
pa probaj jednoj lutki da okreneš glavu ovako kao što je na slici!

ili idi na anatomiju pa pitaj nekog asistenta da ti pojasni...možda nabodeš i neku asistentkinju!

 
ako ti je ovo neubedljivo, onda ti i nemaš organ tela koji treba ubedjivati, al bukvalno!
ovo je odraz čoveka, ko zna odakle, 99,999% bukvalno ovog koji fotka
i glava je okrenuta tako da NIKAKO se ne slaže sa položajem ramena i kičme
ipak je ovo čovek na slici, a ne zmija, al kao što rekoh, trebi nešto objašnjavati je besmisleno
čisto gubljenje vremena, doveka možeš crtati, ti nemaš čime to da razumeš...nisi kriv...priroda!
telo je nagnuto 100% bez ikakvog uvijanja NAPRED i nemoguće je ovako okrenuti glavu

a o ODNOSU TELO -*GLAVA da i ne govorim...ponesi metar pa meri ljude po ulici, šta da ti kažem...
kad ne možeš sam da zamisliš ili udji u neku radnju i zamoli ih da ti daju da meriš one lutke
pa probaj jednoj lutki da okreneš glavu ovako kao što je na slici!

ili idi na anatomiju pa pitaj nekog asistenta da ti pojasni...možda nabodeš i neku asistentkinju!

Jel mogu da te zamolim da u nekom fotošopu iscrtaš konture čoveka ili lica koje vidiš u refleksu na kacigi? Znači na viziru iscrtaj mi tu ćelu i bradu koju vidiš jer ja ne vidim. Hvala.
 
O, okej. Možemo se na to osloniti pri budućim udarima asteroida. :lol: Jer ako uspori do 500 km/h na visini od 6 km, do zemlje će sigurno još da uspori i praktično samo da legne na Zemlju....
Sad me zezaš. Zato je bio bitan ugao ulaska u atmosferu. Nije komandni modul pao ko kamen na zemlju pod 90°, već pod određenim uglom zbog čega je njegova putanja bila parabolična-eliptična, kako god. Napravi asteroid konusnog oblika sa posebnim štitovima koje pretvaraju kinetičku u toplotnu energiju kao CM i neka pod istim uglom s širim dijelom udje u zemljinu atmosferu, opremi ga potisnicima za upravljanje i rotaciju, mislim da će se isto desiti.

GIF-2794ae399191460abd67bca65bbf9493.gif
 
Sila gravitacije na visini od 50km i na visini od 100 km malo se razlikuje od one pri površini Zemlje:

At an altitude of 50 km (31 miles) above the Earth's surface, the force of gravity is slightly weaker compared to the surface. This is because as an object moves away from the Earth's surface, it experiences a decrease in gravitational pull due to the increasing distance between them. However, since 50 km is still relatively close to the Earth's surface, the difference in gravity is not significant.

Let's calculate the gravity acceleration at an altitude of 50 km:

g = (6.67430 × 10^-11 * 5.972 × 10^24) / (6371 + 50)^2
g ≈ 8.665 m/s^2

Therefore, at an altitude of 50 km, the gravity acceleration is approximately 8.665 m/s^2.

Now let's calculate the gravity acceleration at an altitude of 100 km:

g = (6.67430 × 10^-11 * 5.972 × 10^24) / (6371 + 100)^2
g ≈ 7.750 m/s^2

Therefore, at an altitude of 100 km, the gravity acceleration is approximately 7.750 m/s^2.

Dakle, pošto je ispod 6 km vazduh znatno gušći i usporavanje će biti daleko značajnije? :lol:
Tačno oboje (principijelno, nisam provjeravao račun), sila Zemljine teže se smanjuje pri udaljavanju od Zemlje i pošto je vazduh gušći ispod 6km i usporavanje usljed otpora vazduha će biti značajnije. Šta ti je bila poenta?
 
okej. Možemo se na to osloniti pri budućim udarima asteroida. :lol: Jer ako uspori do 500 km/h na visini od 6 km, do zemlje će sigurno još da uspori i praktično samo da legne na Zemlju.
Хм, заправо, кад уђе у земљину атмосферу он , у зависности од претходне брзине, успорава или убрзава. Углавном, од почетне брзине приликом уласка у атмосферу он убрзава до пада због гравитације. Евентуално, његово убрзање се може нешто смањити због трења, односно губитка масе с којом је ушао у атмосферу.
 
Хм, заправо, кад уђе у земљину атмосферу он , у зависности од претходне брзине, успорава или убрзава. Углавном, од почетне брзине приликом уласка у атмосферу он убрзава до пада због гравитације. Евентуално, његово убрзање се може нешто смањити због трења, односно губитка масе с којом је ушао у атмосферу.
https://mobidrive.com/sharelink/p/6rLwZOAy2rtFalxaRGmQRo5wqzk3MT064HDxAHya6RZm

Situacija s meteorima je malo komplikovanija zbog postojanja dodatnih aerodinamičnih sila, lift i drag (mrsko mi tražiti srpski prevod). Bitno je podebljano, drag sila koja djeluje suprotno od pravca kretanja tijela i koja ga usporava je u ovakvim slučajevima dominantna u odnosu na gravitaciju (koja te vuče ka centru Zemlju) i lift silu (koja djeluje pod 90° na gore od vektora brzine kojom tijelo upada u atmosferu i zbog koje avioni u suštini lete)

To truly understand the motion of a re-entering Shuttle, we have to start by listing what forces might affect it. After a bit of thought, we could come up with the following short list of forces to worry about:
• The force of gravity
• The force of drag
• The force of lift
• Other forces just in case
We discussed gravity, as described by Sir Isaac Newton, back in Section 4.1.3. Drag and lift are two other forces that any object traveling through the atmosphere must deal with. “Other” forces cover us in case we forgot something. These forces are illustrated in Figure 4.1.7-5.
Drag is a force that resists motion through the atmosphere. If you were to put your hand out the window of a fast-moving car and turn your palm into the wind, you'd feel the force of drag pushing back on your hand. The drag force acts in the direction opposite to your motion.
Lift is a force produced at a right angle to the direction of motion as a result of air moving over an object's surface. An object with the correct shape, such as an airplane's wing, will generate enough lift force to overcome the force of gravity and “lift” it into the air.
For Shuttles, meteors, and ICBMs entering the atmosphere at near orbital velocities, it turns out that
• The re-entry vehicle is a point mass
Drag is the dominant force—all other forces, including lift and gravity, are insignificant. (We’ll see why this is a good assumption later.)
Figure 4.1.7-4. Re-entry Coordinate System. Our re-entry-coordinate system uses the center of the vehicle at the start of re-entry as the origin. The orbital plane is the
fundamental plane, and the principal direction is down. The re-entry flight-path angle, γ, is the angle between local horizontal and the velocity vector.
Figure 4.1.7-5. Significant Forces on a Reentry Vehicle. A re-entry vehicle could poten-
tially encounter lift, drag, and gravity forces. Of these, drag is by far the most important.


Sad preskačem formule iz članka da ne pretvorim ovaj post u kobasicu. Sledeće bitno:

So what does all this have to do with our meteor entering the atmosphere? A meteor hitting the Earth's atmosphere is travelling fast--
really fast. The Earth itself is moving at about 26 kilometers per second! So if the Earth just runs into a meteor that happens to be minding its own business in interplanetary space, the entry velocity (Ventry) will be about 26 km/s. As it first enters the atmosphere, high above the Earth's surface, the density of the air is very thin, so the initial deceleration is relatively low. But as the meteor dives deeper into the atmosphere, the air gets thicker and the deceleration builds rapidly, slowing down the meteor even more.

...

Let’s start by applying this numerical analysis technique to the motion of the meteor entering the atmosphere, as we discussed earlier. Recall, its velocity is pretty much constant initially, while it is high in the thin atmosphere. But then, it hits a wall as the atmosphere thickens and it slows rapidly. The results of the numerical integration for this example are shown in Figure 4.1.7-9. We can see from the graph what we expected to find from our discussion. Notice in the figure that the velocity stays nearly constant through the first ten seconds, when the meteor is still above most of the atmosphere. But conditions change rapidly over the next ten seconds. The meteor loses about 90% of its velocity—almost like hitting a wall. With most of its velocity lost, the vehicle decelerates much more slowly—it takes 20 seconds more to slow down by another 1000 m/s.

Ko god je dovoljno dokon preporučio bih da pročita članak, meni je zanimljiv bio, ima tu grafik na slici 4.1.7-9 na strani 12 koji pokazuje da se brzina meteora koji ulazi u atmosferu uvijek smanjuje (na odmoru sam, nemam laptopa pa mi mrsko da na mobilnom screenshotujem i postavljam slike, praštajte) upravo zato što je ta drag sila najznačajnija. Naravno da to usporavanje zavisi i od brzine ulaska i ugla pod kojim objekat ulazi u atosferu. Sigurno da postoje meteori koji se "odbiju" od atmosfere i vrate u svemir ako su brzina i ugao odgovarajući. Oni koji krenu prema Zemljinoj površini zbog otpora vazduha bivaju usporeni, po ovom članku. Uspavo sam sam sebe ovim palamudjenjem :zzzz:
 
https://mobidrive.com/sharelink/p/6rLwZOAy2rtFalxaRGmQRo5wqzk3MT064HDxAHya6RZm

Situacija s meteorima je malo komplikovanija zbog postojanja dodatnih aerodinamičnih sila, lift i drag (mrsko mi tražiti srpski prevod). Bitno je podebljano, drag sila koja djeluje suprotno od pravca kretanja tijela i koja ga usporava je u ovakvim slučajevima dominantna u odnosu na gravitaciju (koja te vuče ka centru Zemlju) i lift silu (koja djeluje pod 90° na gore od vektora brzine kojom tijelo upada u atmosferu i zbog koje avioni u suštini lete)

To truly understand the motion of a re-entering Shuttle, we have to start by listing what forces might affect it. After a bit of thought, we could come up with the following short list of forces to worry about:
• The force of gravity
• The force of drag
• The force of lift
• Other forces just in case
We discussed gravity, as described by Sir Isaac Newton, back in Section 4.1.3. Drag and lift are two other forces that any object traveling through the atmosphere must deal with. “Other” forces cover us in case we forgot something. These forces are illustrated in Figure 4.1.7-5.
Drag is a force that resists motion through the atmosphere. If you were to put your hand out the window of a fast-moving car and turn your palm into the wind, you'd feel the force of drag pushing back on your hand. The drag force acts in the direction opposite to your motion.
Lift is a force produced at a right angle to the direction of motion as a result of air moving over an object's surface. An object with the correct shape, such as an airplane's wing, will generate enough lift force to overcome the force of gravity and “lift” it into the air.
For Shuttles, meteors, and ICBMs entering the atmosphere at near orbital velocities, it turns out that
• The re-entry vehicle is a point mass
Drag is the dominant force—all other forces, including lift and gravity, are insignificant. (We’ll see why this is a good assumption later.)
Figure 4.1.7-4. Re-entry Coordinate System. Our re-entry-coordinate system uses the center of the vehicle at the start of re-entry as the origin. The orbital plane is the
fundamental plane, and the principal direction is down. The re-entry flight-path angle, γ, is the angle between local horizontal and the velocity vector.
Figure 4.1.7-5. Significant Forces on a Reentry Vehicle. A re-entry vehicle could poten-
tially encounter lift, drag, and gravity forces. Of these, drag is by far the most important.


Sad preskačem formule iz članka da ne pretvorim ovaj post u kobasicu. Sledeće bitno:

So what does all this have to do with our meteor entering the atmosphere? A meteor hitting the Earth's atmosphere is travelling fast--
really fast. The Earth itself is moving at about 26 kilometers per second! So if the Earth just runs into a meteor that happens to be minding its own business in interplanetary space, the entry velocity (Ventry) will be about 26 km/s. As it first enters the atmosphere, high above the Earth's surface, the density of the air is very thin, so the initial deceleration is relatively low. But as the meteor dives deeper into the atmosphere, the air gets thicker and the deceleration builds rapidly, slowing down the meteor even more.

...

Let’s start by applying this numerical analysis technique to the motion of the meteor entering the atmosphere, as we discussed earlier. Recall, its velocity is pretty much constant initially, while it is high in the thin atmosphere. But then, it hits a wall as the atmosphere thickens and it slows rapidly. The results of the numerical integration for this example are shown in Figure 4.1.7-9. We can see from the graph what we expected to find from our discussion. Notice in the figure that the velocity stays nearly constant through the first ten seconds, when the meteor is still above most of the atmosphere. But conditions change rapidly over the next ten seconds. The meteor loses about 90% of its velocity—almost like hitting a wall. With most of its velocity lost, the vehicle decelerates much more slowly—it takes 20 seconds more to slow down by another 1000 m/s.

Ko god je dovoljno dokon preporučio bih da pročita članak, meni je zanimljiv bio, ima tu grafik na slici 4.1.7-9 na strani 12 koji pokazuje da se brzina meteora koji ulazi u atmosferu uvijek smanjuje (na odmoru sam, nemam laptopa pa mi mrsko da na mobilnom screenshotujem i postavljam slike, praštajte) upravo zato što je ta drag sila najznačajnija. Naravno da to usporavanje zavisi i od brzine ulaska i ugla pod kojim objekat ulazi u atosferu. Sigurno da postoje meteori koji se "odbiju" od atmosfere i vrate u svemir ako su brzina i ugao odgovarajući. Oni koji krenu prema Zemljinoj površini zbog otpora vazduha bivaju usporeni, po ovom članku. Uspavo sam sam sebe ovim palamudjenjem :zzzz:
Па, ок. Тело које уђе у земљину атмосферу успорава због већег отпора, а то је условљено густином атмосфере. То успоравање има своје границе... Шта би конкретно била поента с тим?
 
Па, ок. Тело које уђе у земљину атмосферу успорава због већег отпора, а то је условљено густином атмосфере. То успоравање има своје границе... Шта би конкретно била поента с тим?
Pa da ta činjenica da tijela koja iz svemira udju u atmosferu značajno usporavaju omogućava korištenje padobrana u završnoj fazi spuštanja (dijalog izmedju Mrkalja i mene par postova iznad). Samo sam se nadovezao na tvoj post

Хм, заправо, кад уђе у земљину атмосферу он , у зависности од претходне брзине, успорава или убрзава. Углавном, од почетне брзине приликом уласка у атмосферу он убрзава до пада због гравитације. Евентуално, његово убрзање се може нешто смањити због трења, односно губитка масе с којом је ушао у атмосферу.

da to dodatno pojasnim, ništa previše pametno.
 

INDIJA LANSIRALA RAKETU NA MESEC: Ako uspe sletanje, postaće četvrta zemlja koja je to ostvarila​

14.07.2023. / 14:03





Hiljade ljudi je iz galerije za gledaoce posmatralo lansiranje, koje je pozdravljeno ovacijama i glasnim aplauzom.
Izvor: EPA-EFE/IDREES MOHAMMED
Letelica Čandrajan 3 poletela je ka Mesecu u petak (14. jula) iz svemirskog centra Sriharikota u Indiji. Time će, ako letelica dostigne cilj, Indija biti tek četvrta zemlja koja je ostvarila sletanje na Mesec, posle Sjedinjenih Američkih Država, bivšeg Sovjetskog Saveza i Kine.
Hiljade ljudi je iz galerije za gledaoce posmatralo lansiranje, koje je pozdravljeno ovacijama i glasnim aplauzom.

 Čandrajan 3
Izvor: EPA-EFE/JAGADEESH NV
„Čandrajan-3 je započeo svoje putovanje ka Mesecu", rekao je direktor Indijske svemirske istraživačke organizacije (ISRO) Sridhara Paniker Somanat.
Raketi će biti potrebno između 15 i 20 dana da uđe u orbitu Meseca, nakon čega će naučnici usporiti njeno kretanje zbog bezbednog sletanja, koje se očekuje u noći između 23. i 24. avgusta.
Prethodnik ove letelice, Čandrajan 2, lansiran je u julu 2019. godine, ali je bio samo delimično uspešan. Njegov orbiter nastavlja da kruži i proučava Mesec čak i danas, ali sletanje nije izvršeno jer se srušio. To je bilo zbog „kvara u kočionom sistemu u poslednjem trenutku", objasnio je Milsvami Anadurai, direktor projekta Čandrajan 1.
Direktor ISRO Sridhara Paniker Somanat rekao je da su pažljivo proučili podatke iz poslednjeg udesa i izveli vežbe simulacije kako bi popravili greške.
„Rover nosi pet instrumenata koji će se fokusirati na otkrivanje fizičkih karakteristika površine Meseca, atmosfere blizu površine i tektonske aktivnosti kako bi se proučavalo šta se dešava ispod površine. Nadam se da ćemo pronaći nešto novo", rekao je Somanat.
 Čandrajan 3.jpeg
Izvor: EPA-EFE/INDIAN SPACE RESEARCH ORGANISATION
Južni pol Meseca je još uvek u velikoj meri neistražen - površina koja tamo ostaje u senci je mnogo veća od one na severnom polu, što znači da postoji mogućnost pronalaska vode u oblastima koje su trajno zasenjene. Čandrajan 1 je prvi otkrio vodu na Mesecu 2008. godine, u blizini južnog pola.
„Imamo više naučnog interesa za ovo mesto jer je ekvatorijalni region, koji je bezbedan za sletanje, već dostignut i dosta podataka je dostupno za to", rekao je Somanat. „Ako želimo da dođemo do značajnog naučnog otkrića, moramo da odemo u novo područje kao što je južni pol, ali ono ima veće rizike za sletanje."
Somanat je dodao da su podaci o padu Čandrajan 2 "prikupljeni i analizirani" i da su pomogli da se isprave sve greške u najnovijoj misiji.
Anadurai je rekao da bi sletanje moralo da bude "apsolutno precizno" da bi se poklopilo sa početkom lunarnog dana (dan na Mesecu je jednak 14 dana na Zemlji) jer bi baterijama lendera i rovera bila potrebna sunčeva svetlost da bi bili sposobni da se pune i funkcionišu.
Misija na Mesec, kaže Anadurai, zamišljena je početkom 2000-ih kao uzbudljiv projekat za privlačenje talenata u vreme IT buma u Indiji, pošto je većina diplomaca tehnologije želela da se pridruži softverskoj industriji: „Uspeh koji je postigao Čandrajan 1 je pomogao u tom pogledu. Svemirski program postao je predmet ponosa Indije i sada se smatra veoma prestižnim raditi za Isro."
Ali širi cilj indijskog svemirskog programa, kaže Anadurai, „obuhvata nauku, tehnologiju i budućnost čovečanstva".
 
Još 3 dana do očekivanog sletanja indijske probe na južni pol Meseca.

The lander is scheduled to attempt a touchdown on August 23. Rough terrain is expected to complicate a landing on the lunar south pole. A previous mission by India's space agency, the Chandrayaan-2, crashed in 2019 near where the Chandrayaan-3 will attempt a touchdown.

https://www.abc.net.au/news/2023-08...oon-landing-russia-south-pole-water/102751344

 

Back
Top