Rešenje trisekcije ( n-sekcije ) i konstrukcija n-pravilnog mnogougla pomoću šestara i lenjira .

Lopta se podeli na dva jednaka dela , dobijena polovine sadrži dve površine , krug ( prestavlja ravansku geometriju ) i polu-sfera ( prestavlja sfernu geometriju ), kružnica je granica između kruga i polu-sfere
gledaj sliku ( ispod )
u krugu je dat proizvoljan ugao BAC ,
KRUG
lenjir ( lenjir je savitljiv , da se može crtati na sferi ) duž BA produžimo do kružnice da dobijemo tačku D
SFERA
lenjir spojimo tačke B i D , dobijemo krivu BD
lenjir i šestar - postupak delenja krive na dva jednaka dela je isti kao postupak delenja duži u ravni na dva jednaka dela , dobijemo tačku E
lenjir - spojimo tačke C i E i dobijemo krivu CE
https://2bl3tq.bn1302.livefilestore..../q1.png?psid=1
Proporcija duži postoji u ravansku geometriju , otkrio sam da se može postupak primeniti na sferu
odabermo tačku G
šestar EG , iz tačke G dobijemo tačku H
šestar EG , iz tačke H dobijemo tačku I
šestar EG , iz tačke E dobijemo tačku J
šestar EG , iz tačke J dobijemo tačku K
šestar EG , iz tačke K dobijemo tačku L
lenjir tačku L i tačku I spojimo , dobijemo krivu LI
šestar EG , iz tačke L dobijemo tačku P
šestar EG , iz tačke P i dobijemo tačku O
lenjir spojimo tačke E i P i produžimo do kružnice , dobijemo tačku Q
lenjir spojimo tačke E i O i produžimo do kružnice , dobijemo tačku R
KRUG
lenjir spojimo tačku A i tačku Q , dobijamo duž AQ
lenjir spojimo tačku A i tačku R , dobijemo duž AR
https://dc4f8a.bn1302.livefilestore..../q2.png?psid=1

ovim smo izvršili trisekciju datog proizvodnog ugla , ostalo se dobije iz ovog ( n-sekcija , n-pravilan mnogougao ) ...

Sad razglasite svuda da sam rešio 2-mileniske matematičke probleme