Problemi iz matematike, fizike, hemije ... - Strana 110
Strana 110 od 161 PrvaPrva ... 1060100106107108109110111112113114120160 ... PoslednjaPoslednja
Prikazujem rezultate 2.726 do 2.750 od 4021

Tema: Problemi iz matematike, fizike, hemije ...

       
  1. #2726
    Zaslužan član
    Učlanjen
    15.05.2009.
    Pol
    muški
    Poruke
    16.678
    Reputaciona moć
    189

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Drugi zadatak ti je samo slicnost trouglova i pitagorina teorema .

    (5+x)2 + (12+x)2=172

    a=5+x
    b=12+x
    P=1/2*ab



  2. #2727
    Zainteresovan član
    Učlanjen
    08.08.2009.
    Pol
    ženski
    Poruke
    208
    Reputaciona moć
    20

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Ohhh boze....ja racunala 8abc8 - abc.....

    Hvala vam!

    Drugi i dalje ne razumem.....

    Hipotenuza mi je podeljena na dva dela, jedan je 5cm, a drugi je 12 cm.
    Centar opisane kruznice oko pravouglog trougla je srediste hipotenuze.
    Znaci sa x obelezim rastojanje od sredista hipotenuze i mesta na kom je hipotenuza podeljena na dva odsecka, tj. polovina hipotenuze je 5+x ili 12-x. Tezisna duz iz temena C je jednaka 12-x ili 5+x, odnosno 3, 5 cm jer je 5+x = 12-x, x = 3,5 cm.
    Posto je AC1 i CC1 = 3,5 cm i C1B = 3,5 cm meni odatle sledi da su stranice a i b pravouglog trougla jednake....
    Onda mi je stranica a koren iz 144,5.......verovatno nista od ovoga nije tacno... heLp.....
    Poslednji put ažurirao/la Ivaaannnaaa : 15.07.2010. u 16:43

  3. #2728
    Zaslužan član
    Učlanjen
    15.05.2009.
    Pol
    muški
    Poruke
    16.678
    Reputaciona moć
    189

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Gledaj. Ako krug upises u trougao, kakav god da je, onda uvek vazi da su stranice tog trougla tangente na krug .



    Znaci ako je svaka stranica tangenta na krug, sta znas iz osnova geometrije ? Znas da ce precnik odnosno poluprecnik kruga (duz OA', odnosno OB', odnosno OC' ,gde su A',B',C' dodirne tacke tangente i kruznice , je poluprecnik ) da "pada" pod pravim uglom na tangentu . To su osnove geometrije .




    Ovde vidis primer, za jedan poluprecnik, vidis da AC kod nas je to OA' "pada" pod pravim uglom na stranicu trougla . Uradi to za sve tri stranice odnosno povuci 3 razlicita poluprecnika na sve tri razlicite stranice i videces da sve one padaju pod pravim uglom .

    Kada si to nacrtala, neke stvari postaju jasne . Trougao je podeljen na 6 razlicitih delova



    Gore slike objasnjava ovo sto sve vreme govorim . Kod nas su S,Q,R zamenjene A',B',C' , temena su nam ista odnosno A,B,C , i centar kruznice je njima P nama je O .

    E sad treba primetiti sledece . Ova sest trouglica, imaju neki veze sa necim sto se zove podudarnost trouglova . Vidis koji su podudarni ali matematika nije ono sto vidis, vec se to mora dokazati . Prepusticu tebi to ako ne uspes pitaj objasnicu ti . Obrati najvise paznju na zajednicke stranice i iste uglove, i podudarnost ce ti biti ocigledna .


    Slika koja je najpribliznija nasem zadatku je sledeca , pa hajde da je prodiskutujemo:



    Znamo iz zadatka da je AM=5 i MC=12 . Jednom kada dokazes da su svaki od ovih trouglica podudarni sa jednim svojim susedom, mozemo da zakljucimo sledece:

    svaka starnica jednog trouglica jednaka je duzini stranici njemu podudarnog, odnosno dobicmo informaciju da je i NC=12 cm , ali i da je AP=5 cm .

    Dalje, posmatram trouglove POB i BNO, oni su podudarni takodje (dokazi!), ako su im stranice PO=ON= r sto je ocigledno i ugao PON prav, znaci cetvorougao POBN je kvadrat, odnosno PO=ON=NB=BP=r odnosno x kako sam ja obelezio prilikom resavanja .

    Sto nam kazuje da katetu AB pravouglog trougla mozemo da zapisemo kao x+5 a drugu katetu kao x+12 . Primenom pitagorine teoreme na pravougli trougao dobijamo:

    (x+5)2+(x+12)2=172

    Cijim resavanjem po x (r) mozemo da odredimo stranice a i b pravouglog trougla preko kojih nalazimo i povrsinu ovog tougla .

    P=1/2*ab


    Pozdrav

  4. #2729
    Obećava
    Učlanjen
    01.02.2004.
    Pol
    muški
    Lokacija
    NBGD
    Poruke
    95
    Reputaciona moć
    38

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Uopsteno i najjednostavnije, ako znamo da su X i Y (C = X + Y, C duzina hipotenuze) duzine delova hipotenuze podeljene tackom u kojoj upisana kruznica dodiruje hipotenuzu onda se povrsina trougla moze izracunati jednostavno kao:

    P = X * Y

    sto u tvom slucaju daje: P = 12 * 5 = 60.

    Ipak za izvodjenje ove formule najbolje je da konsultujes skicu koju je Stevee prikazao.
    Poslednji put ažurirao/la Siddhartha : 16.07.2010. u 09:47
    Om Muni Muni Mahamuni Shakyamuni Soha

  5. #2730
    Zainteresovan član
    Učlanjen
    08.08.2009.
    Pol
    ženski
    Poruke
    208
    Reputaciona moć
    20

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Sad mi je konačno sve jasno !

    Stevee, hvala ti na ovako detaljnom odgovoru.
    Problem je što ja ne znam mnogo teorije koja mi treba za ovakve zadatke.
    Moj profesor sa nama uopšte ne radi ovakve zadatke. Radimo samo ono najosnovnije i najlakše što skoro svako u razredu može da uradi, a prilično smo jako odeljenje. Mislim da ne postoji čovek koji više mrzi svoj posao!

    I tebi, Siddhartha, puno hvala za pomoć.

  6. #2731
    Starosedelac kreptoman (avatar)
    Učlanjen
    20.10.2007.
    Pol
    muški
    Poruke
    26.015
    Tekstova u blogu
    5
    Reputaciona moć
    538

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    imam ja 2 pitanja:

    1) shta su kramerove formule?
    2) kako se radi sistem:

    2x-y+3z=0
    x+2y-5z=0
    3x+y-2z=0
    Ovde sam.
    A ti nikad ne stojiš mirno.

  7. #2732
    Zaslužan član
    Učlanjen
    15.05.2009.
    Pol
    muški
    Poruke
    16.678
    Reputaciona moć
    189

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Citat Original postavio kreptoman Pogledaj poruku
    imam ja 2 pitanja:

    1) shta su kramerove formule?
    2) kako se radi sistem:

    2x-y+3z=0
    x+2y-5z=0
    3x+y-2z=0
    Kramerove formule su ti formule za resavanje sistema jednacina metodom determinante, samo im je to mnogo dugo pa ih oni zovu Kramerovim formulama to ti je :

    x=Dx/D
    y=Dy/D
    za sistem sa dve nepoznate , odnosno:
    x=Dx/D
    y=Dy/D
    z=Dz/D
    za sistem sa tri nepoznate i tako dalje .
    Medjutim ono na sta treba da obratis paznju je sledece, (ovo je tipicna caka, upamti) , kada posle znaka jednakosti "=" u sistemu, posle svake jedinacine imas nulu "0" uvek znas da ovaj sistem ima sigurno tzv trivijalno resenje, odnosno da je resenje (x,y,z)=(0,0,0) i ovakav sistem se zove homogenim , proverom videces da je stvarno (0,0,0) resenje sistema , medjutim ne mozes jos uvek sa sigurnoscu da kazes da je ovo i jedino resenje . Elem, kod ovakvog sistema NE SMES raditi kramerovim formulama !! Zapravo smes, ali neces nista dobiti . Probaj i videces zasto (U deliocu ceti se javiti nula sto je matematicki corsokak, nema dalje (Misli se na delioc u kramerovim formulama odnosno D, ono ce uvek da bude jednako nuli kod ovakvog sistema) . Dakle , jedno resenje je sigurno 0, ostala resenja ako ih ima treba naci nekim drugim putem, najpreporucljiviji je Gausov metod ili metod suprotnih koeficijenata. Ajde da vidimo sve metode:

    1) Metod zamene
    Klasika, ako nista ne znas iz matematike ovo ti je pravi izbor, tipicno sljakanje . Iz jedne jedinacine izrazis jedno nepoznatu npr x . Isto uradis i za drugu jedinacinu, i onda tu nepoznatu u nasem slucaju x, zamenis u trecu jednacinu, tako da dobijes samo dve jednacine sa dve nepoznate koja je resiva . Evo na tvom primeru:

    Iz (1) kazes : x=(y+3z)/2
    Iz (3) kazes : x=(2z-y)/3
    I onda ove unacis u (2) , odnosno formiras novi sistem ali sa dve nepoznate cime si skratio sebi posao :

    (y+3z)/2 + 2y - 5z=0 ... (1) "Nova prva jednacina"
    (2z-y)/3 + 2y - 5z =0 ... (2) "Nova druga jednacina"

    I sad resavas ove dve, prvu pomnozis sa 2 a drugu sa 3 da bi se uslobodio razlomka, dobijamo:

    y+3z + 4y - 10z = 0
    2z-y + 6y - 15z =0
    _____________________
    5y - 7z = 0
    -5y + 13z = 0
    ______________________
    Ako i dalje zelis da sljakas odnosno da koristis metod zamene kazes, iz prve jedinacine vidim da je 5y=7z zamenimo to u donjoj:

    -7z +13z = 0
    6z=0
    z=0
    5y=7z => y=0 (Vratili smo "smenu")
    x=(y+3z)/2 => z=(0+0)/2=0

    Voila i ovim nacimon dobijamo vec predvidjena resenja odnosno (x,y,z) = (0,0,0)

    2)Gausov metod (Metod suprotnih koeficijenata) , se svodi na sledece:

    2x-y+3z=0
    x+2y-5z=0
    3x+y-2z=0

    Uvidis neku promenjivu , prvu koja ti padne na pamet u dve razlicite jednacine, recimo prvu i drugu (mada je logicnije prvu i trecu ali ipak cemo prvu i drugu, resenje ce biti isto) . Recimo prmonjevia y . U prvoj ti uz y stoji -1, jel ? A u drugoj tu uz y stoji +2 . Suprotni koeficijetni je metod gde cele jednacine iz sistema mnozis onim brojem tako da se unapred odabrane promenjive krate prilikom sabiranja . U nasem slucaju prvo treba pomnoziti samo sa 2 (da bi uz y stajala -2, jer vec imamo +2 u drugoj i onda +2-2=0) a drugu ne treba dirati . Uradimo to:


    2x-y+3z=0 / *2
    x+2y-5z=0
    3x+y-2z=0
    ___________

    4x -2y + 6z=0
    x+2y-5z=0

    Sada ih saberemo , koristeci sledecu logiku:

    2 + 1 = 3

    4 + 5 = 9

    ==>

    2+1+4+5=3+9
    12=12

    Odnosno sabiramo levu sa levom i desnu sa desnom stranom:

    4x + x -2y + 2y +6z -5z=0
    5x +z =0 Kao sto vidis nema y-ona, dakle to je poenta, osloboditi se jedne nepoznate i svesti sistem od tri jednacine na sistem od dve jednacine . Dakle nasli smo jednu "vezu" izmedju x i z , sada nam treba druga . Kako smo ovde kombinovali prvu i drugu jednacinu sada moramo neke druge dve i isto sa eliminacijom y-ona, ovo je vrlo vazno . Recimo drugu i trecu:

    x+2y-5z=0
    3x+y-2z=0

    Logicno je da treba trecu odnosno ovde drugu, pomnoziti sa -2 =>

    x+2y-5z=0
    -6x-2y+4z=0

    Saberemo ih:

    -5x - z =0
    5x+z=0 Corsokak opet smo dobili istu jednacinu

    Hajde da probamo sad prvu i trecu :
    2x-y+3z=0
    3x+y-2z=0

    Nema potrebe za mnozenjem jer vec imamo +y i -y =>

    5x + z = 0 I ovde dobijam istu jednacnu . Sad se covek zapita kako ovo da resi . Pa ovaj sistem uvek je isti za bilo koje vrednosti x,y,z dok god odgovara veza 5x + z = 0 . Znaci ovim (dobijanjem iste jedinacine praveci kombinacije 1-2 , 2-3, 1-3 jednacine) smo dokazali da sistem ima beskonacno mnogo resenja odnosno da je neodredjen . Tj za svaku vrednost broja x uvek mozes naci vrednost y i z koja ce da odgovara svim jednacinama ovog sistema . Mozes kao resenje napisati da je sistem neodredjen i da tako ostavis, ali secajuci kako je to Vene radio, mislim krajnje glupo ali ajde da napomenem mozda ceti traziti . On je kao rekao x uzima vrednost neko broja t pa kazes, kako je 5x+z=0 => z=-5z=> z=-5t

    I kako je 2x-y+3z=0 (prva jednacina sistema) onda vazi 2t - y + 3z = 0 i ako ovde dodam da je z=-5t onda je 2t - y +3*(-5t)=0 odnosno y=-15t+2t=-13t Pa je resenje sistema

    (x,y,z)=(t,-13t,-5t) Odnosno za svako x mozes naci y i z . Ako je x=2 (t=2) znas da je y=-26 a z=-10 , ako je x=3 znaces da je y=-39 a z=-15 i tako mozes u beskonacnost da "setas" x i uvek ce imati beskonacno mnogo resenja .

    3) Metod determinatni meni omiljeni metod Imas:

    2x-y+3z=0
    x+2y-5z=0
    3x+y-2z=0

    Koeficijetni ovih jednacina obrazuju jednu determinatnu, tri nepoznate znaci determinanta treceg reda, dve nepoznate deerminante drugog reda, a generalno n nepoznatih znaci determinanta n-tog reda .

    "Glavna" determinanta je determinanta sa koeficijentima ispred znaka jednakosti odnosno

    D= 2 -1 3 / 1 2 -5 / 3 1 -2 (Nadam se da razumes)
    Determinta Dx se dobije kada svuda umesto koeficijenata uz x u glavnoj determinanti zamenis brojem posle znaka jednakosti u nasem slucaju 0 .

    Dakle umesto 2,1,3 pises 0,0,0 i dobijes

    Dx= 0 -1 3 / 0 2 -5/ 0 1 -2 Kako imas tri vezane nule u jednoj kolini sigurno je vrednost Dx=0 bez racunjana (Isto vazi ako imas tri vezane nule u jednom redom ali ne i po dijagonali ) Naravno za determinantu n-tog reda moras imati n vezanih nula u redu odnosno koloni .
    Stoga lako zalkjucujemo da je Dy, Dz= 0

    I tu pocinje diskusija sistema:

    Ako je D <> (razlicito) 0 onda sistem ima jedinstveno resenje odnosno
    x=Dx/D y=Dy/D z=Dz/D odnosno primenis Kramerove formule za dobijanje resenja

    Ako je D=0 onda imas dve mogucnosti:

    1) Ako je Dx=Dy=Dz=0 onda je sistem neodredjen (Nas primer) ali za svaki slucaj treba odraditi Gausov metod jer se desava da ima jos neko resenje neprevidjeno ovim, dakle ovo je samo da znas na cemu si , a Gausov metod ce videti da li imas jos neko resenje .

    2) Ako je barem jedan od Dx, Dy, Dz razlicit od nule onda je sistem nemoguc .


    4) Graficko resavanje Ovo je neprakticno za ono sto tebi treba i sastoji je u crtanju jednacina prava u koordinatni sistem i onda se trazi presek pravih kao resenje, ali on je za nas nebitan ali ga treba napomenuti .

  8. #2733
    Zaslužan član
    Učlanjen
    15.05.2009.
    Pol
    muški
    Poruke
    16.678
    Reputaciona moć
    189

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Ako imas neke nedoumice pregledaj i ovo :

    http://www.matematiranje.com/Visa%20...metoda_det.pdf

  9. #2734
    Starosedelac kreptoman (avatar)
    Učlanjen
    20.10.2007.
    Pol
    muški
    Poruke
    26.015
    Tekstova u blogu
    5
    Reputaciona moć
    538

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    e al gore si napisao da se ne sme raditi kramerovim formulama a onda ga koristish u trecem metodu?
    Ovde sam.
    A ti nikad ne stojiš mirno.

  10. #2735
    Početnik GospodjicaVoland (avatar)
    Učlanjen
    25.07.2006.
    Pol
    ženski
    Poruke
    5
    Reputaciona moć
    0

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Da li moze neko molim vas da mi posalje neki link na objasnjenje kako se racunaju uzoracki koeficijenti korelacije sa koracima, ili da mi objasni kako taj proces trba da ide.
    Unapred hvala!

  11. #2736
    Zaslužan član
    Učlanjen
    15.05.2009.
    Pol
    muški
    Poruke
    16.678
    Reputaciona moć
    189

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Citat Original postavio kreptoman Pogledaj poruku
    e al gore si napisao da se ne sme raditi kramerovim formulama a onda ga koristish u trecem metodu?
    Gle, u sustini ti mozes da ga koristis ali postoji izvestan rizik da izgubis resenje, zato ne savetujem kramerove formule kod ovakvog sistema vec suprotne koeficijente ili zamenu .

  12. #2737
    Početnik
    Učlanjen
    30.09.2006.
    Pol
    muški
    Poruke
    4
    Reputaciona moć
    0

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Uf, mucim se sa nekim prostim zadacima iz elektronike pa me interesuje da li mozete da mi pomognete.

    Zadatak 1.

    Inverzna sturja saturacije diode na slici je 4,5 uA.
    Odrediti struje I1 i I2 ako je R1 = 1,5kOhma R2 = 4,5kOhma i Vcc = 10V

    E sad kako sam ja to odradio
    Posto je dioda pozitivno polarisana kroz nju tece struja i javlja se napon od 0,6V - Vd

    sa tim napon na tacki izmedju diode i otpornika , neki Vx ce biti

    Vx = Vcc - 0,6V = 9,4V

    Struja I1 = Vx/R1 = 9,4V / 1500Ohma = 0,00626A = 63mA
    Struja I2 = Vx/R2 = 9,4V / 4500Ohma = 0,0020A = 20mA

    interesuje me da li sam dosao do tacnog resenja.


    Zadatak2

    Odrediti napone i struje ako se zna da je Is = 60uA

  13. #2738
    Aktivan član UltimaN (avatar)
    Učlanjen
    23.07.2008.
    Pol
    muški
    Lokacija
    Borča
    Poruke
    1.665
    Reputaciona moć
    38

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Prvi bi trebao da je dobar, mada smo mi za napon na diodi uzimali da je 0,7V (al to je to u principu).

    A za drugi, dioda je inverzno polarisana, kroz nju protiče struja Is, koja takođe protiče kroz paralelnu vezu otpornika R1 i R2. Tako će struja kroz R1 biti I1=Is*R2/(R1+R2), struja kroz R2 će biti I2=Is*R1/(R1+R2)
    Napon V na otpornicima će biti Is*R1*R2/(R1+R2). Napon na diodi biće Vcc-V

  14. #2739
    Početnik
    Učlanjen
    30.09.2006.
    Pol
    muški
    Poruke
    4
    Reputaciona moć
    0

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Citat Original postavio UltimaN Pogledaj poruku
    Prvi bi trebao da je dobar, mada smo mi za napon na diodi uzimali da je 0,7V (al to je to u principu).

    A za drugi, dioda je inverzno polarisana, kroz nju protiče struja Is, koja takođe protiče kroz paralelnu vezu otpornika R1 i R2. Tako će struja kroz R1 biti I1=Is*R2/(R1+R2), struja kroz R2 će biti I2=Is*R1/(R1+R2)
    Napon V na otpornicima će biti Is*R1*R2/(R1+R2). Napon na diodi biće Vcc-V
    To je otprilike i to sto sam mislio.
    Hvala puno!

  15. #2740
    Početnik
    Učlanjen
    10.04.2010.
    Pol
    muški
    Poruke
    31
    Reputaciona moć
    0

    Podrazumevano Matematicko problem HITNO!!!

    zna li neko koliko je ovo http://img696.imageshack.us/img696/9906/92239426.png znaci x na dvije trecine pa sve to na 4 molim vas matematicari pomozite
    Poslednji put ažurirao/la zivkoj : 16.08.2010. u 20:03

  16. #2741
    Zaslužan član Paganko (avatar)
    Učlanjen
    14.03.2004.
    Pol
    muški
    Lokacija
    Miskatonic University, Arkham
    Poruke
    15.988
    Tekstova u blogu
    14
    Reputaciona moć
    1673

    Podrazumevano Re: Matematicko problem HITNO!!!

    koje?
    STILL IST UNSER HERZ
    UND KURZ IST UNSER TOD!

  17. #2742
    Zaslužan član Papa Smurf (avatar)
    Učlanjen
    13.04.2009.
    Pol
    muški
    Poruke
    17.594
    Tekstova u blogu
    55
    Reputaciona moć
    6966

    Podrazumevano Re: Matematicko problem HITNO!!!

    Iks na osam trecina... Sta je tu problem...
    Zavist valja i zaslužiti...

  18. #2743
    Zaslužan član Paganko (avatar)
    Učlanjen
    14.03.2004.
    Pol
    muški
    Lokacija
    Miskatonic University, Arkham
    Poruke
    15.988
    Tekstova u blogu
    14
    Reputaciona moć
    1673

    Podrazumevano Re: Matematicko problem HITNO!!!

    Citat Original postavio Fanatik78 Pogledaj poruku
    Iks na osam trecina... Sta je tu problem...
    ne bih znao reći.....

    ili treći koren iz x na osmi... što mu se uvati na isto...
    STILL IST UNSER HERZ
    UND KURZ IST UNSER TOD!

  19. #2744
    Zaslužan član
    Učlanjen
    15.05.2009.
    Pol
    muški
    Poruke
    16.678
    Reputaciona moć
    189

    Podrazumevano Re: Matematicko problem HITNO!!!




    Joj crni sine gde na drustvene nauke

  20. #2745
    Aktivan član
    Učlanjen
    08.09.2009.
    Pol
    muški
    Lokacija
    u tami svoje prazne glave
    Poruke
    1.237
    Reputaciona moć
    0

    Podrazumevano Re: Matematicko problem HITNO!!!

    x na 8/3

  21. #2746
    Buduća legenda Добро дошли (avatar)
    Učlanjen
    31.10.2008.
    Pol
    muški
    Lokacija
    Зајечар
    Poruke
    9.992
    Reputaciona moć
    311

    Podrazumevano Re: Matematicko problem HITNO!!!

    Citat Original postavio Paganko Pogledaj poruku
    ne bih znao reći.....
    ili treći koren iz x na osmi... što mu se uvati na isto...
    ... treći koren iz x na osmi, некако изгледа као довршено решење.

  22. #2747
    Početnik
    Učlanjen
    18.08.2010.
    Pol
    muški
    Poruke
    5
    Reputaciona moć
    0

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    f(x+1/x)=x2+1/x2+2010

    moze li neko ovo da uradi,bicu mu zahvalan
    moze poslati i na moj mail branejug@yahoo.com

  23. #2748
    Zaslužan član
    Učlanjen
    15.05.2009.
    Pol
    muški
    Poruke
    16.678
    Reputaciona moć
    189

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    Citat Original postavio noovajlija Pogledaj poruku
    f(x+1/x)=x2+1/x2+2010

    moze li neko ovo da uradi,bicu mu zahvalan
    moze poslati i na moj mail branejug@yahoo.com
    A sta s ovim ?

    x+1/x=t <=> x2+1/x2+2=t2

    => x2+1/x2=t2-2

    f(t)=t2-2+2010=t2+2008

    f(x)=x2+2008

    Ako se trazi f(x)

  24. #2749
    Početnik
    Učlanjen
    18.08.2010.
    Pol
    muški
    Poruke
    5
    Reputaciona moć
    0

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    izvini stevee nisam dobo napisao zadatak.naglasicu ovim <> za koje brojeve vrijedi razlomak jer sam novi na forumu pa ne znam bas dobro da se luzim svim funkcijama.

    f(x+<1/x>)=x2+<1/x2>+2010 ,trazi se f(-2)

    nadam se da razumijes kako sad izgleda ovaj zadatak

  25. #2750
    Početnik
    Učlanjen
    18.08.2010.
    Pol
    muški
    Poruke
    5
    Reputaciona moć
    0

    Podrazumevano Re: Zadaci iz matematike, fizike, hemije...

    jos jednom izvinite.nisam bas bio dobro zapisao zadatak

Pravila za slanje poruka

  • Ne možete kreirati novu temu
  • Ne možete poslati odgovor
  • Ne možete dodati priloge
  • Ne možete prepraviti svoju poruku
  •